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Abstract: Earlier Researches in LID systems 

found that inclusion of prosodic features 

(alike, speech rate, Fundamental Frequency 

and Syllable timing) offered a little to 

develop the performance of their systems. 

Focused study on the utility of prosodic 

feature is attempted to evaluate parameters 

to behold the fundamental frequency and 

amplitude contours on syllable – by-syllable 

bases. The timing relationship is computed 

from the F0 whereas histogram of features 

(feature pairs) are collected through 

amplitude information followed by 

computations of loglikehood ratio function 

for evaluating the unknown utterance (word/ 

speech) in a pair wise discrimination task. 

The consequence reflects prosodic 

parameters to be useful in discriminating 

languages. Recent works in LID using 

prosody have proven appreciating results 

with better accuracy. This paper describes 

the importance of prosodic features in 

comparison with other possible features and 

methods for language identification. 

Keywords: Prosody, Utterance, Modeling, 

Expectation Maximization, GMM. 

 

I. INTRODUCTION 

 

In the discussion of related work, we focus 

on previous work in sign language 

recognition. For coverage of gesture 

recognition, the survey in [24] is an 

excellent starting point. Other, more recent 

work is reviewed in [35]. Much previous 

work has focused on isolated sign language 

recognition with clear pauses after each 

sign, although the research focus is slowly 

shifting to continuous recognition. These 

pauses make it a much easier problem than 

continuous recognition without pauses 

between the individual signs, because 

explicit segmentation of a continuous input 

stream into the individual signs is very 

difficult. For this reason, and because of co 

articulation effects, work on isolated 

recognition often does not generalize easily 

to continuous recognition. 

 

Erensthteyn and colleagues used neural 

networks to recognize finger spelling 

[6].Waldron and Kim also used neural 

networks, but they attempted to recognize a 

small set of isolated signs [34] instead of 

finger spelling. They used Stokoe’s 

transcription system [29] to separate the 
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handshape, orientation, and movement 

aspects of the signs. Kadous used Power 

Gloves to recognize a set of 95 isolated 

Auslan signs with 80% accuracy, with an 

emphasis on computationally inexpensive 

methods [13]. Grobel and Assam used 

HMMs to recognize isolated signs with 

91.3% accuracy out of a 262-sign 

vocabulary. They extracted 2D features from 

video recordings of signers wearing colored 

gloves [9]. Braffort described ARGo, an 

architecture for recognizing French Sign 

Language. It attempted to integrate the 

normally disparate fields of sign language 

recognition and understanding [2]. Toward 

this goal, Gibet and colleagues also 

described a corpus of 3D gestural and sign 

language movement primitives [8]. This 

work focused on the syntactic and semantic 

aspects of sign languages, rather than 

phonology. Most work on continuous sign 

language recognition is based on HMMs, 

which offer the advantage of being able to 

segment a data stream into its constituent 

signs implicitly. It thus bypasses the difficult 

problem of segmentation entirely. 

 

II. BACKGROUND 

 

Speech recognition technology made major 

strides in the 1970s, thanks to interest and 

funding from the U.S. Department of 

Defense. The DoD's DARPA Speech 

Understanding Research (SUR) program, 

from 1971 to 1976, was one of the largest of 

its kind in the history of speech recognition, 

and among other things it was responsible 

for Carnegie Mellon's "Harpy" speech-

understanding system. Harpy could 

understand 1011 words, approximately the 

vocabulary of an average three-year-old. 

Over the next decade, i.e. 1980s , o new 

approaches to understanding what people 

say, speech recognition vocabulary jumped 

from about a few hundred words to several 

thousand words, and had the potential to 

recognize an unlimited number of words. 

One major reason was a new statistical 

method known as the HMM (Hidden 

Markov Model). As the time scope was 

limited and to be able to focus on more 

specific issues than HMM in general, the 

Hidden Markov Model toolkit (HTK) was 

used. HTK is a toolkit for building Hidden 

Markov Models (HMMs). HMMs can be 

used to model any time series and the core 

of HTK is similarly general-purpose.  

 
III. PROSODY FOR LID 

 

Speech is one of the oldest and most natural 

means of information exchange between 

human beings. We as humans speak and 

listen to each other in human-human 

interface. For centuries people have tried to 

develop machines that can understand and 

produce speech as humans do so naturally 

(Pinker, 1994 [20]; Deshmukh et al., 1999 

[5]). Obviously such an interface would 

yield great benefits (Kandasamy,1995,) [12]. 

Attempts have been made to develop vocally 

interactive computers to realise voice/speech 

recognition. In this case a computer can 

recognize text and give out a speech output 

(Kandasamy,1995) [12]. Speech recognition 

can be defined as the process of converting 

an acoustic signal, captured by a 

microphone or a telephone, to a set of words 

(Zueet al., 1996 [36]; Mengjie, 2001 

[17]).Automatic speech recognition (ASR) 

is one of the fastest developing fields in the 
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framework of speech science and 

engineering. As the new generation of 

computing technology, it comes as the next 

major innovation in man-machine 

interaction, after functionality of text-to-

speech (TTS), supporting interactive voice 

response (IVR) systems. 

 

IV. DISCUSSIONS 

The implementation purposes the following 

methods were taken into practice : (a) 

Building the task grammar, (b) Constructing 

a dictionary for the models (c) Recording 

the data (d) Creating transcription files for 

training data (e) Encoding the data (feature 

processing) (f) (Re-) training the acoustic 

models (g) Evaluating the recognizers 

against the test data (h) Reporting 

recognition results. These are exhaustive 

representation of a LID system and do 

require more robustness for better 

performance. 
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